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Sequence-based Anytime Control

Daniel E. Quevedo, Member, IEEE, and Vijay Gupta, Member, IEEE

Abstract

We present two related anytime algorithms for control of nonlinear systems when the processing

resources available are time-varying. The basic idea is to calculate tentative control input sequences

for as many time steps into the future as allowed by the available processing resources at every time

step. This serves to compensate for the time steps when the processor is not available to perform any

control calculations. Using a stochastic Lyapunov function based approach, we analyze the stability

of the resulting closed loop system for the cases when the processor availability can be modeled as

an independent and identically distributed sequence and via an underlying Markov chain. Numerical

simulations indicate that the increase in performance due to the proposed algorithms can be significant.

I. INTRODUCTION

A lot of recent attention has focused on networked and embedded control (see, e.g., the

special issue [1] and the references therein). One issue which plays an important role, especially

in embedded systems, is that of time-varying and limited processing power. As more and more

objects are equipped with micro-processors that are responsible for multiple functions such as

control, communication, data fusion, system maintenance and so on, the implicit assumption

traditionally made in control design about the processor being able to execute the desired

control algorithm at any time will break down. Similarly, if a remote controller is in charge

of many devices, multiple control tasks will compete for shared processor resources, leading to

constrained availability of processing resources for the individual control loops. It is, thus, of

interest to study control algorithms that can function despite limited and time-varying availability

A preliminary version of parts of this work was presented at the 49th IEEE Conference on Decision and Control, see [15].
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of processing power. There is a growing number of works that deal with this issue. The impact

of finite computational power has been looked at most closely for techniques such as model

predictive control. McGovern and Feron [27], [28] presented bounds on computational time for

achieving stability for specific optimization algorithms, if the processor has constant, but limited,

computational resources. Henriksson et al [16], [17] studied the effect of not updating the control

input in continuous time systems for the duration of the computational delay for optimization

algorithms based on active set methods. Also related are works on event-triggered and self-

triggered control systems, and online sampling, e.g., [8], [43], [45], [46], where a control input

is calculated aperiodically, but on demand, depending on the plant state. In addition, we would

like to mention work on scheduling of control tasks [6], [7], [41] that looks at the problem of

processor queue scheduling, when control calculation is merely one of the tasks in the queue.

An alternative approach to achieve system robustness in the presence of time-varying pro-

cessing resources is to develop anytime algorithms. The main purpose of anytime algorithms is

to provide a solution even with limited processing resources, and to refine the solution as more

resources become available. Anytime algorithms seek to make efficient use of resources and are,

thus, popular in the context of real-time systems. In control, however, there are few methods

available for developing anytime controllers. A notable work is that of Bhattacharya et al [4] who

focused on linear systems, and presented a control algorithm that updated a different number

of states depending on the available computational time. However, the available computational

time was required to be known to the controller a priori. Another important work is that of

Greco et al [11], who proposed switching among a pre-designed set of controllers that may

require different execution times. Although the idea can be generalized to nonlinear processes,

the analysis in the paper relied on Markovian jump linear system theory. In Gupta and Luo [12],

an anytime algorithm for systems with multiple inputs was presented. The main idea was based

on calculating the components of the control vector sequentially, and refining the process model

as more processing time becomes available. Since the algorithm is based on identifying the

modes of the process that require more urgent control, it is, thus, again largely limited to linear

processes.

In the present work, we present two anytime control algorithms for nonlinear plants described

in state-space form that are based on using extra processor availability to calculate sequences

which have the potential to be implemented at the plant input at future times. This safeguards
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performance at those time steps where the processor is entirely unavailable for control. Availabil-

ity of processor time for control calculations determines the length of the sequences calculated

and, thereby, affects the quality of the result. A distinguishing feature of the algorithms presented

is that processor availability is allowed to be random, with unknown distribution. Moreover, our

algorithms are one of the first that are suitable for nonlinear plants. For cases where processor

availability is governed by a suitable Markov Chain, we use Lyapunov functions to establish

sufficient conditions for stochastic stability of the closed loop. Numerical simulations illustrate

that performance gains achieved with the algorithms proposed can be significant.

It is worth emphasizing that in the algorithms presented, the potential control values are

calculated sequentially, reutilizing the already computed values for the next computation. This

is computationally attractive, especially since the length of the sequence to be calculated is

time-varying and not known a-priori. Thus, our approach differs significantly from the methods

used in packetized predictive control, e.g., in [10], [29], [33]–[37], [44]. In the latter works

calculation of control sequences requires solving optimization problems over a finite horizon of

length determined by the controller itself.

The remainder of this manuscript is organized as follows: In Section II we formulate the

anytime control design problem studied. Section III presents the proposed algorithms. Stochastic

stability analysis is carried out in Sections IV to VII. Numerical simulations are documented in

Section VIII. Section IX draws the final conclusions.

Notation: We write N for {1, 2, . . .} and N0 for N∪{0}. R represents the real numbers and

R≥0 , [0,∞). The p× p identity matrix is denoted via Ip, 0p×q is the p× q all-zeroes matrix,

0p , 0p×p, and 0p , 0p×1. The notation {x}K stands for {x(k) : k ∈ K}, where K ⊆ N0.

We adopt the conventions
∑`2

k=`1
ak = 0 and

∏`2
k=`1

ak = 1, if `1 > `2 and irrespective of

ak ∈ R. The superscript T refers to transpose. The Euclidean norm of a vector x is denoted via

|x| =
√

xT x. A function ϕ : R≥0 → R≥0 is of class-K∞ (ϕ ∈ K∞), if it is continuous, zero at

zero, strictly increasing, and unbounded. The probability of an event Ω is denoted by Pr{Ω}

and the conditional probability of Ω given Γ by Pr{Ω |Γ}. The expected value of a random

variable ν given Γ is denoted by E{ν |Γ} while E{ν} refers to the unconditional expectation.
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II. PROBLEM FORMULATION

We consider nonlinear (and possibly unstable) plants sampled periodically with sampling

interval Ts > 0 and described in discrete-time via:

x(k + 1) = f(x(k), u(k), w(k)), k ∈ N0. (1)

In (1), x ∈ Rn is the plant state, u ∈ Rp is the plant input, and w ∈ Rm is an unmeasured

disturbance. The model (1) satisfies f(0n,0p,0m) = 0n and the initial state, x(0), is arbitrarily

distributed (with possibly unbounded support).

Throughout this work, we will assume that the unperturbed plant model

x(k + 1) = f(x(k), u(k),0m) (2)

is globally stabilizable via state feedback. More precisely, we make the following assumption:

Assumption 1: There exist functions ϕ1, ϕ2 ∈ K∞, V : Rn → R≥0, κ : Rn → Rp, and a

constant ρ ∈ [0, 1), such that for all x ∈ Rn,

ϕ1(|x|) ≤ V (x) ≤ ϕ2(|x|)

V (f(x, κ(x),0m)) ≤ ρV (x).
(3)

�

When implementing discrete-time control systems it is generally assumed that the processing

resources available to the controller are such that the control law can always be evaluated

within a fixed (and small) time-delay, say δ ∈ (0, Ts).1 However, in practical networked and

embedded systems, the processing resources (e.g., processor execution times) available for control

calculations may vary and, at times, be insufficient to generate a control input within the

prescribed time-delay δ. One possible remedy for this issue would to redesign the control system

for a worst case by choosing larger values of δ and, possibly, Ts. Clearly, such an approach will,

in general, lead to unnecessary conservativeness and associated poor performance. In the present

work we adopt an anytime control paradigm to seek favorable trade-offs between processor

availability and control performance.

1Recall that fixed delays can be easily incorporated into the model (1) by aggregating the previous plant input to the plant

state, see also [32]. For ease of exposition, throughout this work, we will use the standard discrete-time notation as in (1).
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Before proceeding we note that a direct implementation of the control policy used in Assump-

tion 1, when processing resources are time varying, results in a baseline algorithm, which gives

rise to the plant input:

u(k) =


κ(x(k)), if sufficient computational resources to evaluate

κ(x(k)) are available between kTs and kTs + δ,

0p, otherwise,

(4)

where the symbol u(k) with k ∈ N0 denotes the plant input which is applied during the interval2

[kTs+δ, (k+1)Ts+δ). Whilst the baseline algorithm (4) is intuitive and simple, it is by no means

clear that it cannot be outperformed by more elaborated control formulations. In the following

section, we will present two related anytime control algorithms for the plant model (1). The aim

is to make more efficient use of the processing resources available for control, when compared

to the baseline algorithm (4).

III. ANYTIME CONTROL THROUGH CALCULATION OF CONTROL SEQUENCES

Throughout this work, we will assume that the controller needs processor time to carry out

mathematical computations, such as evaluating functions. However, simple operations at a bit

level, such as writing data into buffers, shifting buffer contents and setting values to zero, do

not require processor time. Similarly, input-output operations, i.e., A/D and D/A conversion

are triggered by external asynchronous loops with a real-time clock and do not require that the

processor be available for control. As in regular discrete-time control, these external loops ensure

that state measurements are available at the instants {kTs}k∈N0 and that the controller outputs

are passed on to the plant actuators at times {kTs + δ}k∈N0 , where δ is fixed; see, e.g., [2]

A standing assumption is that if the processor were fully available for control, then calculating

the desired plant input u(k) for a given plant state x(k) would be possible within the pre-allocated

time-frame t ∈ (kTs, kTs + δ). Issues arise when, at times, processor availability does not permit

the desired plant input to be calculated. To take care of the associated performance loss, in the

present work we propose to use one of the two anytime control algorithms presented below.

2If sufficient computational resources are not available, then one could alternatively hold the previous control value and set

u(k) = u(k − 1). The situation mirrors that encountered when the control input is affected by dropouts; see, e.g., [38].
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Availability

Anytime Control

b(k)

x(k) u(k)Algorithm

Processor

Fig. 1. Anytime control structure with internal buffer state b(k).

A. Algorithm Descriptions

Both algorithms are based on the following basic idea: At time intervals when the controller is

provided with more processing resources than are needed to evaluate the current control input,

the algorithm calculates a sequence of tentative future plant inputs, say ~u(k). The sequence

is stored in a local buffer and may be used when, at some future time steps, the processor

availability precludes any control calculations, see Fig. 1.

For further reference, we denote the buffer states via {b}N0 , where

b(k) =


b1(k)

b2(k)
...

bΛ(k)

 ∈ RΛp, k ∈ N0 (5)

for a given value Λ ∈ N and where each bj(k) ∈ Rp, j ∈ {1, . . . , Λ}. We also introduce the

shift matrix S and the unit vector e1 via:

S ,



0p Ip 0p . . 0p

... . . . . . . . . . ...

0p . . . 0p Ip 0p

0p . . . . . . . 0p Ip

0p . . . . . . . . . . . 0p


∈ RΛp×Λp, e1 ,


Ip

0p

...

0p

 ∈ RΛp×p. (6)

Algorithm A1 is presented in Fig. 2. It can be seen that the algorithm proposed amounts to a

dynamic state feedback policy with internal state variable b(k). The latter provides

u(k) = eT
1 b(k) = b1(k), (8)
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Step 1: At time t = 0,

SET b(−1)← 0Λp, k ← 0

Step 2: IF t ≥ kTs, THEN

INPUT x(k);

SET χ← x(k), j ← 1, b(k)← Sb(k − 1);

END

Step 3: WHILE “sufficient processor time is available” and j ≤ Λ and time t < (k + 1)Ts,

SET v ← V (χ), where V is the Lyapunov function in (3);

Use v and χ to find uj(k), such that

V (f(χ, uj(k),0m)) ≤ ρv; (7)

IF j = 1, THEN

OUTPUT u1(k);

SET b(k)← 0Λp;

END

SET bj(k)← uj(k);

IF “sufficient processor time is not available” or t ≥ (k + 1)Ts, THEN

GOTO Step 5

END

SET χ← f(χ, uj(k),0m), j ← j + 1;

END

Step 4: IF j = 1, THEN

OUTPUT b1(k);

END

Step 5: SET k ← k + 1 and GOTO Step 2;

Fig. 2. Algorithm A1

and suggested plant inputs at future time steps. At the time steps when more processor time is

available, a longer suggested trajectory of control inputs is calculated and stored in the buffer.3

If the buffer runs out of tentative plant inputs (as calculated in Step 3), then the actuator values

are set to zero. With Algorithm A1, as soon as the processor calculates a control input u0(k), it

3Note that, by Assumption 1, in Step 3, one could simply set uj(k)← κ(χ).
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Step 3: WHILE “sufficient processor time is available” and j ≤ Λ and time t < (k + 1)Ts,

SET v ← V (χ), where V is the Lyapunov function in (3);

Use v and χ to find uj(k), such that V (f(χ, uj(k), 0)) ≤ ρv;

IF j = 1, THEN

OUTPUT u1(k);

END

SET bj(k)← uj(k);

IF “sufficient processor time is not available” or t ≥ (k + 1)Ts, THEN

GOTO Step 5;

END

SET χ← f(χ, uj(k),0m), j ← j + 1;

END

Fig. 3. Step 3 of Algorithm A2

throws away the remaining elements in the buffer, see line “b(k)← 0Λp” in Step 3.

Algorithm A2 is almost identical to the first algorithm, A1. The only difference is that, in

Step 3, the buffer contents are never re-set to zero, i.e., the line “b(k)← 0Λp” is eliminated, see

Fig. 3. Thus, if Algorithm A2 is used, then buffer elements may stem from calculations carried

out at different time instants. By not deleting the entire buffer, but only replacing the appropriate

entries, when using A2 the buffer will run out of data less often than when using A1.

It is worth noting that neither algorithm requires prior knowledge of future processor availabil-

ity for control. This opens the possibility to employ the algorithms in shared systems, where the

controller task can be preempted by other computational tasks carried out by the processor, see

also [5], [25], [48]. As in other anytime algorithms, there exists a compromise between resultant

closed loop performance and the processor availability. Understanding this trade-off forms the

bulk of this work.

B. Basic Properties

With the algorithms presented in Section III-A, extra processing time is used to calculate

additional elements of the tentative plant input sequences, thus, providing higher quality results,

i.e., sequences ~u(k) which better safeguard against performance loss at future time instances
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where processor availability may be insufficient. To further elucidate the situation, we note that

in both algorithms, during each iteration of the while-loop in Step 3, the state value x(k) is used to

calculate a tentative control, namely uj(k). In the sequel, we will denote by N(k) the total number

of iterations of the while-loop which are carried out during the interval t ∈ (kTs, (k + 1)Ts)

and note that N(k) ∈ {0, 1, . . . , Λ}. Thus, if N(k) ≥ 1, then the entire sequence of tentative

controls is

~u(k) =


u1(k)

u2(k)
...

uN(k)(k)

 ∈ RN(k)·p. (9)

If N(k) = 0, then the processor was not available for control, and (with either of the algorithms)

the actuator values are taken as the first p elements of the shifted state b(k) = Sb(k−1), see (6).

In terms of the notation introduced above and in (6), if Algorithm A1 is used, then the buffer

b(k) obeys the recursion:

b(k) =


Sb(k − 1), if N(k) = 0, ~u(k)

0(Λ−N(k))p

 , if N(k) ≥ 1.
(10)

On the other hand, if Algorithm A2 is used, then we have:

b(k) =


Sb(k − 1), if N(k) = 0, ~u(k)

0(Λ−N(k))p

+ MN(k)b(k − 1), if N(k) ≥ 1,
(11)

where

Mi ,
(
IΛp −Di

)
S, (12)

with

Di ,

diag(Iip, 0(Λ−i)p), if i ∈ {1, 2, . . . , Λ− 1}

IΛp, if i = Λ.
(13)

In addition to studying the length of the tentative control sequences provided by the algorithms,

namely {N}N0 , it is convenient to investigate how many values which stem from the tentative

May 21, 2012 DRAFT



10

control sequences {~u(k− `)}, ` ∈ N0 are contained in the buffer state b(k). We will refer to this

value as the effective buffer length (at time k), and denote it as

λ(k) ∈ {0, 1, . . . , Λ}, k ∈ N0 (14)

with λ(−1) = 0. It is easy to see that, if Algorithm A1 is used, then {λ}N0 is governed by

λ(k) =

N(k), if N(k) ≥ 1,

max{λ(k − 1)− 1, 0}, if N(k) = 0,
(15)

whereas, with Algorithm A2, we have

λ(k) = max{N(k), λ(k − 1)− 1}, k ∈ N0. (16)

The following example illustrates the quantities introduced above:

Example 1: Suppose that Λ = 5 and that the processor availability for control is such that

N(0) = 5, N(1) = 0, N(2) = 1, N(3) = 0. If Algorithm A1 is used, then the buffer state at

times k ∈ {0, 1, 2, 3} becomes:

b(0) =



u1(0)

u2(0)

u3(0)

u4(0)

u5(0)


, b(1) =



u2(0)

u3(0)

u4(0)

u5(0)

0p


, b(2) =



u1(2)

0p

0p

0p

0p


, b(3) =



0p

0p

0p

0p

0p


,

which gives λ(0) = 5, λ(1) = 4, λ(2) = 1, λ(3) = 0, and plant inputs u(0) = u1(0), u(1) =

u2(0), u(2) = u1(2), u(3) = 0p. On the other hand, if Algorithm A2 is used, then we have

b(0) =



u1(0)

u2(0)

u3(0)

u4(0)

u5(0)


, b(1) =



u2(0)

u3(0)

u4(0)

u5(0)

0p


, b(2) =



u1(2)

u4(0)

u5(0)

0p

0p


, b(3) =



u4(0)

u5(0)

0p

0p

0p


and λ(0) = 5, λ(1) = 4, λ(2) = 3, λ(3) = 2, u(0) = u1(0), u(1) = u2(0), u(2) = u1(2),

u(3) = u4(0). Note that with Algorithm A1, λ(3) = 0 and therefore the plant input at time

k = 3 is set to zero; with Algorithm A2, the value calculated at time k = 0 is used. �
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IV. STOCHASTIC STABILITY OF ANYTIME CONTROL ALGORITHMS

Since the processor availability for control calculations is random, the plant input is random,

and thus the system (1) evolves stochastically. Various stability notions for stochastic systems

have been studied in the literature (e.g., [20], [22]). In the present work, we are interested in

the following notion:

Definition 1 (Stochastic Stability): A dynamical system with state trajectory {x}N0 is said to

be stochastically stable, if
∞∑

k=0

E
{
ϕ(|x(k)|)

}
<∞, (17)

for some ϕ ∈ K∞. �

Remark 1: It follows directly from (17), that stochastic stability implies that there exists

ϕ ∈ K∞, such that:

lim
k→∞

E
{
ϕ(|x(k)|)

}
= 0. (18)

In the particular case where ϕ(s) = s2, (17) reduces to
∑∞

k=0 E{|x(k)|2} < ∞, and (18) to

limk→∞ E{|x(k)|2} = 0; see also [9], [20]. �

A. Assumptions

Our subsequent stability analysis considers the unperturbed system (2), i.e., where w(k) = 0,

for all k ∈ N0. For pedagogical ease, we also begin by presenting the analysis with the additional

assumption that the processor availability for control is independent and identically distributed

(i.i.d.). Thus, for the analysis in Sections V and VI, we make the following assumption:

Assumption 2: The process {N}N0 introduced in Section III-B is i.i.d., with probability dis-

tribution

Pr{N(k) = l} = pl, (19)

where l ∈ {0, 1, 2, . . . , Λ} and with p0 ∈ [0, 1). �

In Section VII, we will show how to extend this analysis for the case when the processor

availability can be described by a Markov chain, and thus has memory.

Assumption 3 stated below, bounds the rate of increase of the Lyapunov function V in (3),

when the nominal system (2) is run in open-loop. It also imposes a (mild) restriction on the

distribution of the initial plant state.
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Assumption 3: There exists α ∈ [1, 1/p0) such that

V (f(x,0p,0m)) ≤ αV (x), ∀x ∈ Rn. (20)

The initial plant state satisfies

E
{
ϕ2(|x(0)|)

}
<∞, (21)

where ϕ2 ∈ K∞ is as in (3). �

It is worth emphasizig that the fact that Assumptions 1 and 3 are global and stated in terms of

a common Lyapunov function limits the class of plants and control policies considered in our

subsequent analysis. One case where (20) is satisfied is when V and f are globally Lipschitz

continuous, more precisely, when there exist ϕV , ϕf ∈ R≥0 such that:

|V (x)− V (z)| ≤ ϕV |x− z|

|f(x, u, w)− f(z, u, w)| ≤ ϕf |x− z|.

In this case, and since f(0n,0p,0m) = 0n, we have

V (f(x,0p,0m)) = |V (f(x,0p,0m))− V (f(0n,0p,0m))| ≤ ϕV |f(x,0p,0m)|

≤ ϕV ϕf |x| ≤ ϕV ϕfϕ
−1
1 V (x) = αV (x),

for α = (ϕV ϕf )/ϕ1 and (20) will hold provided p0 < ϕ1/(ϕV ϕf ).

Example 2: Consider an open-loop unstable constrained plant model of the form (1) with

f(x, u, w) =

 x2 + u1

−sat(x1 + x2) + u2

+

√w2 + 5−
√

5

0

 ,

with

x =

x1

x2

 , u =

u1

u2

 , sat(µ) =


−1, if µ < −1,

ν if µ ∈ [−1, 1],

1, if µ > 1,

see [21, Example 2.3] and [34]. The second component of the plant input is constrained via

|u2(k)| ≤ 0.8, ∀k ∈ N0. If we choose V (x) = 2|x| and policy κ(x) =
[
−x2 0.8sat(x1 + x2)

]T ,

then direct calculations provide that

V
(
f(x, κ(x),0m)

)
= 0.4|sat(x1 + x2)| ≤ 0.4|x1 + x2|

≤ 0.8 max{|x1|, |x2|} −max{|x1|, |x2|}+ |x| ≤ |x|.
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Thus, Assumption 1 holds with ρ = 1/2, and ϕ1(s) = ϕ2(s) = 2s. Furthermore, by proceeding

as in [21, p.73], it can be shown that (20) holds with α = 1.618. Thus, provided that (21) holds

and p0 < 0.618, Assumption 3 is also satisfied. �

The following example illustrates that, at times, it may be convenient to first find a Lyapunov

function V which satisfies (20) and then seek a control policy which ensures that Assumption 1

holds.

Example 3: Consider a scalar unconstrained and unperturbed open-loop unstable non-linear

plant where f(x, u, w) = x2 + u, with x, u ∈ R. A stabilizing control policy which satisfies

Assumption 1 for V1(x) = |x|2 is given by κ1(x) = −x2 + ρx, with ρ ∈ [0, 1). However,

V1(x) = |x|2 is not suitable for use in Assumption 3, since V1(f(x, 0, 0))/V1(x) = x2 → ∞ as

x→∞.

In contrast, if we choose V2 ∈ K∞ as V2(x) = ln(|x|+ 1), for all x ∈ R, then

V2(f(x, 0, 0)) = ln(x2 + 1) ≤ ln(x2 + 2|x|+ 1) = 2 ln(|x|+ 1) = 2V2(x), ∀x ∈ R

and (20) holds with open-loop rate of growth bound constant α = 2. The associated control

policy κ2(x) = −x2 + exp(ρV2(x))− 1, where ρ ∈ [0, 1), gives

V2(f(x, κ2(x), 0)) = ln(| exp(ρV2(x))− 1|+ 1) = ln(exp(ρV2(x))) = ρV2(x).

We conclude that if p0 < 1/2 and the initial plant state is suitably distributed, then Assumptions 1

and 3 will hold. �

B. Stochastic Stability with the Baseline Algorithm

We will next present sufficient conditions under which the baseline algorithm (4) achieves

stochastic stability of the closed loop system. As in (19), we denote via p0 the probability that

the controller is unable to calculate any control input. Thus, if the baseline algorithm (4) is used

and Assumption 2 holds, then (in the disturbance-free case) the closed loop is characterised by:

Pr
{
x(k + 1) = χ+

∣∣ x(k) = χ
}

=

p0, if χ+ = f(χ,0p,0m),

1− p0, if χ+ = f(χ, κ(χ),0m).
(22)

It can be seen that the plant state trajectory is similar to that of a networked control system in

which the controller is unable to communicate with the actuator with probability p0 at any time
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step. Stability conditions for such systems have been derived both for linear systems [13], [18]

and nonlinear systems [34]. In particular, for a scalar linear plant model with a scalar input,

f(x, u, w) = ax + buu + bww, (a, bu, bw) ∈ R3,

and quadratic Lyapunov function, V (x) = x2, the condition p0|a|2 < 1 has been shown to

be necessary and sufficient for stabilizability in [13]. Thus, the constant α needs to satisfy

α ∈ [1, 1/p0) for stability with the baseline algorithm. More generally, we have the following

sufficient condition for stochastic stability when the baseline algorithm is used:

Theorem 1: Suppose that Assumptions 1 to 3 hold. If

p0α + (1− p0)ρ < 1, (23)

then (22) is stochastically stable.

Proof: First we note that, by (22), the process {x}N0 is Markovian. Thus, stability can be

examined by using a stochastic Lyapunov function approach; see, e.g., [22]. The law of total

expectation, when applied to E{V (x(1)) |x(0)}, with V as in (3), gives

E
{
V (x(1))

∣∣ x(0) = χ
}

= p0V (f(χ,0p,0m)) + (1− p0)V (f(χ, κ(χ),0m))

≤ p0αV (χ) + (1− p0)ρV (χ) < V (χ), ∀χ ∈ Rn,
(24)

where we have used (3), (20) and (23). Theorem 2 of [22, Chapter 8.4.2] implies that there

exists c < ∞ such that
∑∞

k=0 E
{
V (x(k))

∣∣ x(0) = χ
}
≤ cV (χ). Thus, by using (3) and taking

expectation with respect to the distribution of x(0), we obtain
∞∑

k=0

E
{
ϕ1(|x(k)|)

}
= E

{ ∞∑
k=0

E
{
ϕ1(|x(k)|)

∣∣ x(0)
}}
≤ E{cV (x(0))} ≤ cE{ϕ2(|x(0)|)} <∞,

where the last inequality follows from (21). Since ϕ1 ∈ K∞, stochastic stability follows.

For the proposed anytime algorithms, stability analysis is more subtle than for the baseline

algorithm. The main reason is that, due to buffering, the plant state {x}N0 will in general not

be Markovian and simple conditioning as in (24) is not possible.4

4Note that some of the results included in Section IV of [15] are incorrect.
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V. STABILITY WITH ALGORITHM A1

To derive sufficient conditions for stochastic stability when Algorithm A1 is used, we will

employ a technique which is roughly based on the approaches used in [23], [34]–[36], [47]. As

will become apparent, randomness of the sequence length process {N}N0 , see (9), makes the

analysis of the anytime algorithms studied significantly more involved than the analysis of the

predictive networked control formulations of [34]–[36].

A. Plant model at times k ∈ K

For ease of exposition, in the sequel we assume that N(0) > 0 and denote the time steps at

which at least one control input is calculated via K = {ki}i∈N0 , where k0 = 0 and

ki+1 = inf
{
k ∈ N : k > ki, N(k) > 0

}
, i ∈ N0. (25)

It is convenient to introduce the iterated mappings with input x(ki), ki ∈ K:5

f j(x(ki)) ,

x(ki), if j = 0,

f(f j−1(x(ki)), uj−1(ki),0m), if j ∈ {1, . . . , N(ki)}
(26)

and the related mappings which describe the nominal plant model when the input is set to zero:

f j
OL(x) ,

x, if j = 0,

f(f j−1
OL (x),0p,0m), if j ≥ 1.

(27)

We also denote the time between two consecutive elements of K via

∆i , ki+1 − ki, ∀(ki+1, ki) ∈ K ×K (28)

and note that, by Assumption 2, the process {∆i}i∈N0 is i.i.d. with geometric distribution

Pr{∆i = j} = (1− p0)p
j−1
0 , j ∈ N, (29)

see [47]. In terms of the quantities introduced above, the state of the nominal plant (2) when

Algorithm A1 is used satisfies:

x(ki + `) =

f `(x(ki)), if ` ∈
{
0, 1, . . . , min(N(ki), ∆i)

}
,

f
`−N(ki)
OL

(
fN(ki)(x(ki))

)
, if N(ki) < ∆i and ` ∈ {N(ki) + 1, . . . , ∆i},

(30)

5For example, we have f1(x(ki)) = f(x(ki), u0(ki),0m) and f2(x(ki)) = f(f(x(ki), u0(ki),0m), u1(ki),0m). Note that,

by Step 3 in the algorithm description, the values {uj(ki)}, j ∈ {0, 1, . . . , N(ki)− 1} are determined by x(ki).
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for all ki ∈ K. It is worth emphasizing that (30) describes the plant state trajectory {x(k)} for

all k ∈ N0.

By setting ` = ∆i in (30), we obtain that the state in (2) when Algorithm A1 is employed

can be described at the instants ki ∈ K via:

Pr
{
x(ki+1) = χ+

∣∣ x(ki) = χ
}

=

Pr{∆i ≤ N(ki)}, if χ+ = f∆i(χ),

1−Pr{∆i ≤ N(ki)}, if χ+ = f
∆i−N(ki)
OL

(
fN(ki)(χ)

)
,

(31)

where ∆i ∈ N.

It is worth noting that in (31), the number of possible values for x(ki+1) given x(ki) is

countably infinite, whereas if the baseline algorithm is used, there are only two possibilities,

see (22). The terms Pr{∆i ≤ N(ki)} can be easily evaluated as per the following lemma:

Lemma 1: Suppose that Assumption 2 holds, then

Pr{∆i ≤ N(ki)} =
1

1− p0

Λ∑
l=1

pl(1− pl
0), ∀ki ∈ K. (32)

Proof: By (28), the random variables ∆i and N(ki) are independent. Furthermore, the two

processes {∆i}i∈N0 and {N}N0 are i.i.d. Thus, we can condition upon N(ki) ≥ 1 to obtain:

Pr{∆i ≤ N(ki)} = Pr{∆i ≤ N(k) | k ∈ K}

=
Λ∑

l=0

Pr{N(k) = l | k ∈ K} ·Pr{∆i ≤ N(k) |N(k) = l, k ∈ K}

=
1

1− p0

Λ∑
l=1

pl ·Pr{∆i ≤ l} =
Λ∑

l=1

pl

l∑
j=1

pj−1
0 .

B. Main Results

As a consequence of (31) and (32), and since u(ki) is determined by x(ki), if Algorithm A1

is used, then the plant state {x(ki)}, with ki ∈ K, is Markovian. Stability of the closed loop can

be analyzed by using a stochastic Lyapunov function approach which, to some extent, parallels

that used to prove Theorem 1. To state our result, we first give the following lemma:

Lemma 2: Consider (31) and suppose that Assumptions 2 and 3 hold. Then

E
{
V (x(ki+1))

∣∣ x(ki) = χ
}
≤

(
Λ∑

l=1

plΩl

)
V (χ), ∀χ ∈ Rn, ∀ki, ki+1 ∈ K, (33)
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where

Ωl , ρ
1− (p0ρ)l

1− p0ρ
+ α

(p0ρ)l

1− p0α
∈ R≥0, l ∈ {1, 2, . . . , Λ}. (34)

Proof: We use the total probability formula twice. First, we condition on the length of the

tentative control sequence calculated during t ∈ (kiTs, (ki + 1)Ts):

E{V (x(ki+1)) |x(ki)} = E
{
E
{
V (x(ki+1))

∣∣ x(ki), N(ki)
}}

=
Λ∑

l=1

E
{
V (x(ki+1))

∣∣ x(ki), N(ki) = l
}
·Pr{N(k) = l | k ∈ K}

=
Λ∑

l=1

pl

1− p0

E
{
V (x(ki+1))

∣∣ x(ki), N(ki) = l
}
.

(35)

We note that in Algorithm A1 previously calculated control values are erased at the instant

ki and, thus, (31) holds. Consequently, the conditional expectation E{V (x(ki+1)) |x(ki), N(ki)}

can be evaluated by conditioning further on ∆i:

E
{
V (x(ki+1))

∣∣ x(ki), N(ki)
}

= E
{
E
{
V (x(ki+1))

∣∣ x(ki), N(ki), ∆i

}}
=

∞∑
j=1

(1− p0)p
j−1
0 E

{
V (x(ki+1))

∣∣ x(ki), N(ki), ∆i = j
}
,

(36)

where we have used (29). Now, using Assumption 3 and Equation (7), we obtain the bound:

E
{
V (x(ki+1))

∣∣ x(ki) = χ, N(ki) = l, ∆i = j
}
≤

ρjV (χ), if j ≤ l,

αj−lρlV (χ), if j > l.

Thus, (36) gives:

E
{
V (x(ki+1))

∣∣ x(ki) = χ, N(ki) = l
}
≤ (1− p0)

(
l∑

j=1

pj−1
0 ρj +

∞∑
j=l+1

pj−1
0 αj−lρl

)
V (χ)

= (1− p0)ΩlV (χ),

since, by Assumption 3, we have p0α < 1. Substitution into (35) establishes (33).

Despite the fact that Lemma 2 considers only the time instants k ∈ N0 where N(k) > 0,

see (25), the bound in (33) can be used to conclude about stochastic stability (for all k ∈ N0).

Theorem 2: Suppose that Assumptions 1–3 hold and define

σ ,
1

1− p0ρ

(
ρ(1− p0α) +

α− ρ

1− p0

Λ∑
l=1

pl(p0ρ)l

)
∈ R≥0. (37)

May 21, 2012 DRAFT



18

If

p0α + (1− p0)σ < 1, (38)

then the system (30) (with state trajectory {x}N0) is stochastically stable.

Proof: By Lemma 2 and since {x}K is Markovian, we have that if

Ω ,
Λ∑

l=1

plΩl < 1, (39)

where Ωl are defined in (34), then

E
{
V (x(ki+1))

∣∣ x(ki), x(ki−1), . . . , x(k0)
}
≤ ΩV (x(ki)).

Since, by Assumption 1, V : Rn → R≥0, we conclude that V is a stochastic Lyapunov function

for (31); c.f., [22], [26].

Direct calculations yield that

Ω =
Λ∑

l=1

plΩl =
ρ

1− p0ρ

Λ∑
l=1

pl +
Λ∑

l=1

pl
(p0ρ)l(α− ρ)

(1− p0ρ)(1− p0α)

=
ρ(1− p0)

1− p0ρ
+

(α− ρ)

(1− p0ρ)(1− p0α)

Λ∑
l=1

pl(p0ρ)l.

(40)

Using equations (40) and (37), we obtain

Ω =
ρ(1− p0)

1− p0ρ
+

(1− p0)
(
σ(1− p0ρ)− ρ(1− p0α)

)
(1− p0ρ)(1− p0α)

=
(1− p0)

(
σ − p0ρσ

)
(1− p0ρ)(1− p0α)

=
(1− p0)σ

(1− p0α)
.

Hence, (38) is equivalent to (39). As a consequence, if (38) holds, then [22, Chapter 8.4.2,

Theorem 2] implies exponential stability at the instants ki ∈ K, i.e., we have:

E{V (x(ki)) |x(k0) = χ0} ≤ ΩiV (χ0), ∀i ∈ N, ∀χ0 ∈ Rn (41)

Now for the time instants k ∈ N \K, i.e., at those time steps when no control input is calculated,

we proceed as in the proof of Lemma 2, to obtain that

E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki)

}
=

Λ∑
l=1

pl

1− p0

E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki), N(ki) = l

}

=
Λ∑

l=1

pl

∞∑
j=1

pj−1
0 E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki), N(ki) = l, ∆i = j

}
.

May 21, 2012 DRAFT



19

Since ρ < 1 < α, we can bound

E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki), N(ki) = l, ∆i = j

}
≤

j−1∑
k=0

αkE
{
V (x(ki)) |x(ki) = χ

}
=

αj − 1

α− 1
V (χ)

so that

E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki) = χ, N(ki)

}
≤ (1− p0)

α− 1

∞∑
j=1

(αj − 1)pj−1
0 V (χ) =

1

1− p0α
V (χ),

in turn yielding

E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki) = χ

}
≤

Λ∑
l=1

pl

(1− p0)(1− p0α)
V (χ) = βV (χ), (42)

where β , 1/(1− p0α) ∈ R≥0. The expectation on the left hand side of (42) is taken with

respect to the distributions of N(ki) and ∆i. Since {x}K is Markovian and N(ki) and ∆i are

independent, we can take conditional expectation E{ · |x(k0)} on both sides of (42) to obtain:

E

{
E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki)

}∣∣∣∣∣ x(k0) = χ0

}
≤ β E

{
V (x(ki)) |x(k0) = χ0

}
⇒ E

{
E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(ki), x(ki−1), . . . , x(k0)

} ∣∣∣∣ x(k0) = χ0

}
≤ β ΩiV (χ0)

⇒ E

{
ki+1−1∑
k=ki

V (x(k))

∣∣∣∣ x(k0) = χ0

}
≤ β E

{
V (x(ki)) |x(k0) = χ0

}
≤ β ΩiV (χ0),

where we have used the bound in (41). Since we assume that k0 = 0, this gives

E


kj+1−1∑

k=0

V (x(k))

∣∣∣∣ x(0) = χ0

 ≤ β

j∑
i=0

ΩiV (χ0) = β
1− Ωj+1

1− Ω
V (χ0) ≤

β

1− Ω
V (χ0).

Thus, by letting kj+1 →∞, it follows that there exists c <∞ such that
∞∑

k=0

E
{
V (k)

∣∣ x(0) = χ0

}
≤ cV (χ0).

The remainder of the proof now follows as in the proof of Theorem 1.

Theorem 2 establishes sufficient conditions for stochastic stability of the closed loop when

processor availability is i.i.d. and Algorithm A1 is used. The quantity introduced in (37) involves

the distribution of {N}N0 , the contraction factor of the baseline controller κ, see (3), and the

bound on the rate of increase of the plant state when left in open loop, see (20).
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As a particular case, suppose that the distribution of {N}N0 satisfies p1 = 1 − p0, i.e., the

processor time availability is such that the Algorithm A1 provides at most one control input.

In this case, expression (37) gives that σ = ρ and, not surprisingly, we recover the sufficient

condition for stochastic stability established for the baseline algorithm (4) in (23).

More generally, if the probability that Algorithm A1 provides more than one control value is

non-zero, then Theorem 2 establishes stochastic stability for a larger class of plant models than

Theorem 1. This observation follows upon noting that σ can be rewritten as:

σ = ρ− (α− ρ)

(1− p0)(1− p0ρ)

Λ∑
l=1

pl

(
ρp0 − (ρp0)

l
)
.

Thus, if pl? > 0 for some l? ∈ {2, 3, . . . , Λ}, then
∑Λ

l=1 pl

(
ρp0 − (ρp0)

l
)

> 0 and σ < ρ. This

suggests that Algorithm A1 has better stabilizing properties than the baseline algorithm.

VI. STABILITY WITH ALGORITHM A2

We first note that for Λ ∈ {1, 2}, Algorithm A2 is equivalent to Algorithm A1. Henceforth,

we focus on cases where Λ > 2. It follows directly from (11) and (16) that with Algorithm A2

if ∆i > N(ki) and λ(ki − 1) > N(ki) + 1, then λ(ki) = λ(ki − 1) − 1 > N(ki) and the plant

input at times {ki + N(ki), ki + N(ki) + 1, . . . , ki + min(λ(ki), ∆i)− 1} will stem from buffer

contents at time ki− 1, see also Example 1. Thus, with Algorithm A2, {x}K and {x}N0 are not

Markovian and the analysis carried out for Algorithm A1 does not carry over directly.

To recover a Markovian structure, consider the overall system state {θ}N0 defined via:

θ(k) ,

 x(k)

b(k − 1)

 . (43)

In terms of θ(k), (11) gives that at all times where N(k) = 0, the plant input is given by

u(k) =
[
0p×(n+p) Ip 0p×(Λ−2)p

]
θ(k), Λ > 2. (44)

Furthermore, {θ}N0 and thereby also {θ}K are Markovian processes. The mapping6

f j
B(θ) ,


θ, if j = 0,f
([

In 0n×Λp

]
f j−1

B (θ),
[
0p×(n+p) Ip 0p×(Λ−2)p

]
f j−1

B (θ),0m

)
Sj
[
0Λp×n IΛp

]
θ

 , if j ≥ 1
(45)

6For example, for j = 1 we have f1
B (θ(k)) =

24f(x(k), b2(k − 1),0m)

Sb(k − 1)

35, see also (5).
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allows one to characterize the nominal system behaviour at times where computational resources

are insufficient to calculate control inputs, so that buffered plant inputs are used. More precisely,

the nominal plant state when Algorithm A2 is used can be stated in terms of a random mapping

with inputs {θ}K as follows:

x(ki + `) =



f `(x(ki)), if ` ∈
{
0, 1, . . . , min(N(ki), ∆i)

}[
In 0n×Λp

]
f

`−N(ki)
B (θ′), if ∆i > N(ki) and λ(ki) > N(ki)

and ` ∈ {N(ki) + 1, . . . , min(λ(ki), ∆i)}

f
`−λ(ki)
OL (x′), if ∆i > λ(ki) and ` ∈ {λ(ki) + 1, . . . , ∆i},

(46)

where f ` and f j
OL are defined in (26) and (27), respectively, λ(ki) = max{N(ki), λ(ki− 1)− 1},

and with

θ′ ,

 fN(ki)(x(ki))

SN(ki)b(ki − 1)


x′ ,

[
In 0n×Λp

]
f

λ(ki)−N(ki)
B (θ′).

(47)

At the instants ki ∈ K, the nominal plant state in (2) when Algorithm A2 is used can thus be

described via:

Pr
{
x(ki+1) = χ+

∣∣ x(ki) = χ, b(ki − 1) = υ
}

=


Pr{∆i ≤ N(ki)}, if χ+ = f∆i(χ),

Pr{N(ki) < ∆i ≤ λ(ki)}, if χ+ =
[
In 0n×Λp

]
f

∆i−N(ki)
B (ϑ),

Pr{∆i > λ(ki)}, if χ+ = f
∆i−N(ki)
OL (ξ),

(48)

where

ϑ =

fN(ki)(χ)

SN(ki)υ

 , ξ =
[
In 0n×Λp

]
f

λ(ki)−N(ki)
B (ϑ). (49)

Note that, as shown in Lemma 1, the probabilities Pr{∆i ≤ N(ki)} used in (48) are i.i.d.

Nevertheless, it is easy to see that

Pr{N(ki) < ∆i ≤ λ(ki)} =
1

1− p0

Λ∑
l=1

pl ·Pr
{
l < ∆i ≤ max{l, λ(ki − 1)− 1}

}
=

Λ∑
l=1

pl

max{l,λ(ki−1)−1}∑
j=l+1

pj−1
0 =

1

1− p0

Λ∑
l=1

pl

(
pl

0 − p
max{l,λ(ki−1)−1}
0

)
,
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expression which depends upon λ(ki − 1) and therefore on b(ki − 1).

The following stochastic stability result is akin to the one developed in Section V-B for

Algorithm A1. It shows that the sufficient condition developed for Algorithm A1 is also sufficient

to guarantee stochastic stability when Algorithm A2 is used.

Theorem 3: Suppose that Assumptions 1 to 3 hold and that Algorithm A2 is used. If (38) is

satisfied, then the closed loop system (with state trajectory {x}N0) is stochastically stable. �

Proof: It follows from (48), (45) and by proceeding as in the proof of Lemma 2 that

E
{
V (x(ki+1))

∣∣ θ(ki)
}

=
Λ∑

l=1

pl

∞∑
j=1

pj−1
0 E

{
V (x(ki+1))

∣∣ θ(ki), N(ki) = l, ∆i = j}. (50)

On the other hand, since λ(ki) is a function of N(ki) and b(ki − 1), we have

E
{
V (x(ki+1))

∣∣ x(ki) = χ, b(ki − 1) = υ,N(ki) = l, ∆i = j}

= E
{
V (x(ki+1))

∣∣ x(ki) = χ, b(ki − 1) = υ,N(ki) = l, ∆i = j, λ(ki) = λ}

≤

ρjV (χ), if j ≤ λ,

αj−λρλV (χ), if j > λ,

where we have used the bounds in (7), (20) and where λ = max{l, λ0 − 1} with λ0 denoting

the index of the last nonzero entry in υ, see (16). Substitution into (50) yields that

E
{
V (x(ki+1))

∣∣ x(ki) = χ, b(ki − 1) = υ
}
≤

Λ∑
l=1

pl

(
λ∑

j=1

pj−1
0 ρj +

∞∑
j=λ+1

pj−1
0 αj−λρλ

)
V (χ)

≤
Λ∑

l=1

pl

( l∑
j=1

pj−1
0 ρj +

∞∑
j=l+1

pj−1
0 αj−lρl

)
V (χ) = ΩV (χ), ∀(χ, υ) ∈ Rn × RΛp

where Ω is defined in (39) and where we have used the fact that ρ < 1 < α and λ ≥ l.

Since {θ}K is Markovian, it follows from [22, Chapter 8.4.2, Theorem 2] that

E
{
V (x(ki))

∣∣ x(k0) = χ0, b(k0 − 1) = υ0

}
≤ ΩiV (χ0), ∀(i, χ0, υ0) ∈ N× Rn × RΛp.

The remainder of the proof now follows, mutatis mutandis, that of Theorem 2.

VII. MARKOVIAN PROCESSOR STATE MODEL

So far we have assumed that the process {N}N0 is i.i.d. In situations where the control loop is

shared with other applications having time-varying and correlated processing demands it is likely

that Assumption 2 will not be satisfied. We will next outline how the analysis presented can be
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extended to encompass cases where the processor availability for control, henceforth modeled

via the processor state process {g}N0 , is correlated.

Assumption 4: The processor state process {g}N0 is an irreducible aperiodic finite Markov

Chain (see, e.g., [24]) with values in the finite set {1, 2, . . . , G}, G ∈ N. Its transition matrix Q

is given by

Q =


q11 q12 . . . q1G

q21 q22 q2G

...
... . . . ...

qG1 qG2 . . . qGG

 , (51)

where qij = Pr{g(k + 1) = j | g(k) = i}, ∀i, j ∈ {1, 2, . . . , G}. Given any processor state

g(k) = ς , the conditional distribution of the process {N}N0 satisfies

Pr{N(k) = l | g(k) = ς} = pl|ς , ∀(l, ς) ∈ {0, 1, . . . , Λ} × {1, 2, . . . , G}, (52)

with given probabilities pl|ς . �

For the baseline algorithm in (4) stochastic stability can be ensured as follows:

Theorem 4: Suppose that Assumptions 1, 3 and 4 hold. Define

p̂0 = max
ς∈{1,2,...,G}

p0|ς . (53)

A sufficient condition for (22) to be stochastically stable is that

p̂0α + (1− p̂0)ρ < 1. (54)

Proof: First, we note that the joint process {(x, g)}N0 is Markovian. Thus, by using the

law of total expectation and the fact that α− ρ > 0, we obtain

E
{
V (x(1))

∣∣ x(0) = χ, g(0) = ς
}
≤ (p0|ςα + (1− p0|ς)ρ)V (χ) ≤ (p̂0α + (1− p̂0)ρ)V (χ), (55)

for all (χ, ς) ∈ Rn × {1, 2, . . . , G}. The remainder of the proof now follows as in the proof of

Theorem 1 and is omitted for space constraints.

The stability results of Sections V and VI can be extended to encompass the Markovian

processor model of Assumption 4. Here we only present the stability results for Algorithm A1.

The main difference from the analysis in Section V is the fact that the plant state {x}K is no

longer Markovian. Interestingly, the analysis can be extended by recognizing that the aggregated

process {(x, g)}K is Markovian.
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Whilst the process {∆i}i∈N0 is no longer i.i.d., the conditional distributions Pr{∆i | g(ki)}

can be evaluated as per the following result:

Lemma 3: Suppose that Assumption 4 holds and define

G ,
{
ς ∈ {1, 2, . . . , G} : p0|ς < 1

}
.

Then7

Pr{∆i = j | g(ki) = ς} = q̄ςQ̄
j−1p̄, ∀(j, ς) ∈ N×G, (56)

where

q̄ς ,
[
qς1 . . . qςG

]
, Q̄ , diag(p0|1, . . . , p0|G)Q, p̄ ,

[
1− p0|1 . . . 1− p0|G

]T
. (57)

Proof: Denote

~g =
[
g(ki + 1) g(ki + 2) . . . g(ki + j)

]
, ~ς =

[
ς1 ς2 . . . ςj

]
and G = Gj . Conditioning upon the processor state sequence ~g ∈ G gives that

Pr{∆i = j | g(ki) = ς} =
∑
~ς∈G

Pr
{
∆i = j | g(ki) = ς, ~g = ~ς

}
Pr{~g = ~ς | g(ki) = ς}

=
∑
~ς∈G

p0|ς1p0|ς2 . . . p0|ςj−1
(1− p0|ςj)qςς1qς1ς2 . . . qςj−1ςj

=
∑
~ς∈G

(qςς1p0|ς1)(qς1ς2p0|ς2) . . . (qςj−2ςj−1
p0|ςj−1

)(qςj−1ςj(1− p0|ςj)),

which can be rewritten in compact form as in (56).

The state evolution at times ki ∈ K can now be evaluated as

Pr
{
x(ki+1) = χ+

∣∣ x(ki) = χ, g(ki) = ς
}

=



Pr{∆i ≤ N(ki) | g(ki) = ς},

if χ+ = f∆i(χ),

1−Pr{∆i ≤ N(ki) | g(ki) = ς},

if χ+ = f
∆i−N(ki)
OL

(
fN(ki)(χ)

)
,

(58)

where ∆i ∈ N and ς ∈ G. Lemma 2 can be generalized as follows:

7Note that in the i.i.d. case of Assumption 2, we have G = Q = 1, G = {1}, Q̄ = p0 and p̄ = 1− p0, so that (56) reduces

to (29).
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Lemma 4: Consider (58) and suppose that Assumption 3 with p0 replaced by p̂0, and As-

sumption 4 hold. Then

E{V (x(ki+1)) |x(ki) = χ, g(ki) = ς} ≤ ΥςV (χ)

for all (χ, ς) ∈ Rn ×G, where

Υς , q̄ς

(
I − ρQ̄

)−1
(

ρI +
(α− ρ)

1− p0|ς

(
I − αQ̄

)−1
Λ∑

l=1

pl|ς(ρQ̄)l

)
p̄, (59)

with q̄ς , Q̄, and p̄ as in (57).

Proof: Following as in the proof of Lemma 2, we first condition upon N(ki) to calculate,

for ς ∈ G,

E{V (x(ki+1)) |x(ki), g(ki) = ς} =
Λ∑

l=1

pl|ς

1− p0|ς
E
{
V (x(ki+1))

∣∣ x(ki), N(ki) = l, g(ki) = ς
}

(60)

and then condition further on ∆i to obtain that

E
{
V (x(ki+1))

∣∣ x(ki), N(ki), g(ki) = ς
}

=
∞∑

j=1

q̄ςQ̄
j−1p̄E

{
V (x(ki+1))

∣∣ x(ki), N(ki), ∆i = j, g(ki) = ς
}
,

where we have used (56). Equation (7) and Assumption 3 then provide the bound:

E
{
V (x(ki+1))

∣∣ x(ki) = χ, N(ki), g(ki) = ς
}
≤

l∑
j=1

q̄ςQ̄
j−1p̄ρjV (χ) +

∞∑
j=l+1

q̄ςQ̄
j−1p̄αj−lρlV (χ)

= q̄ς

( l∑
j=1

Q̄j−1ρj + ρl

∞∑
j=l+1

Q̄j−1αj−l

)
p̄V (χ),

(61)

Since Q is the transition probability of an irreducible aperiodic Markov Chain and ρp̂0 ≤ αp̂0 < 1,

the above summation is convergent. If we now substitute (61) into (60), then we obtain the bound

E{V (x(ki+1)) |x(ki) = χ, g(ki) = ς} ≤
Λ∑

l=1

pl|ς q̄ς

1− p0|ς

(
l∑

j=1

Q̄j−1ρj + ρl

∞∑
j=l+1

Q̄j−1αj−l

)
p̄V (χ)

=
q̄ς

1− p0|ς

Λ∑
l=1

pl|ς

(
ρ
(
I − (ρQ̄)l

)(
I − ρQ̄

)−1
+ α(ρQ̄)l

(
I − αQ̄

)−1
)
p̄V (χ)

=
q̄ς

1− p0|ς

Λ∑
l=1

pl|ς

(
ρ
(
I − ρQ̄

)−1
+ (ρQ̄)l

(
α
(
I − αQ̄

)−1 − ρ
(
I − ρQ̄

)−1))
p̄V (χ)
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where we have used [3, Prop. 9.4.13]. The result now follows upon noting that α
(
I −αQ̄

)−1−

ρ
(
I−ρQ̄

)−1
=
(
I−ρQ̄

)−1(
α
(
I−ρQ̄

)
−ρ
(
I−αQ̄

))(
I−αQ̄

)−1
= (α−ρ)

(
I−ρQ̄

)−1(
I−αQ̄

)−1

and some algebraic manipulations.

Following as in the proof of Theorem 2, one can derive the following stochastic stability result:

Theorem 5: Suppose that Assumption 1 and the hypotheses of Lemma 4 hold. If

Υς < 1, ∀ς ∈ G,

then the system (46) (with state trajectory {x}N0) is stochastically stable.

The above generalizes the analysis in Section V to situations where the processor availability

for control is correlated. The results of Section VI can be similarly extended.

Remark 2: It is easy to see that the i.i.d. model of Assumption 2 corresponds to the special

case of the Markovian model in Assumption 4, obtained by setting G = 1, G = {1}, Q = q11 = 1

and pl = pl|1, for all l ∈ {0, 1, . . . , Λ}. With the above parameters, (53) and (57) give that p̂0 = p0,

q̄ς = q11 = 1, Q̄ = p0 and p̄ = 1− p0. Thus, the term Υς = Υ1 in (59) becomes

Υ1 =
1− p0

(1− p0ρ)(1− p0α
)(ρ(1− p0α

)
+

(α− ρ)

1− p0

Λ∑
l=1

pl(p0ρ)`

)
=

(1− p0)σ

1− p0α
,

where σ is given in (37). Therefore, for the i.i.d. case, Υ1 < 1 if and only if (38) holds, and

Theorem 5 reduces to Theorem 2. �

VIII. NUMERICAL EXAMPLES

Having established sufficient conditions for stochastic stability of the anytime control loops,

we next study performance issues. For that purpose, we assume that the execution time available

is i.i.d., uniformly distributed in the interval [0, 1]. The execution time can also be viewed as the

fraction of the maximum possible processor time that is available at any time step. Denote the

time taken to calculate one control input by τ ∈ (0, 1). The probability distribution of {N}N0 ,

see (19), is then given by

pl = τ, ∀l ∈ {0, 1, . . . , Λ− 1}, pΛ = 1− Λ · τ, (62)

where Λ = b1/τc is the maximum number of control inputs that can be calculated at any

time step. Throughout this section, tentative controls in (9) are obtained by evaluating κ for the

corresponding predicted plant state.
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To evaluate control performance, we consider the empirical cost

J =
1

105
E

{
105−1∑
k=0

(
0.2x2(k) + 2u2(k)

)}
,

where expectation is taken with respect to the availability of execution time as described above.

We first consider a nonlinear plant model (adapted from [31]):

x(k + 1) = x(k) + 0.01(x3(k) + u(k)) + w(k), (63)

where w(k) is white noise uniformly distributed in the interval [0, 0.01]. The baseline control

policy is taken as κ(x) = −x3 − x. It can be verified that if one chooses V (x) = |x|, then

Assumption 1 is satisfied for ϕ1(s) = ϕ2(s) = s and ρ = 0.99. Fig. 4 shows the percentage

improvement in cost achieved as a function of the time taken to calculate one control input for

both algorithms A1 and A2, as compared to the baseline algorithm (4). It can be appreciated in that

figure, both algorithms proposed give a significant performance improvement, with Algorithm

A2 further outperforming Algorithm A1.8

As the plant model becomes more open-loop unstable, the proposed algorithms can be expected

to give higher performance gains. Figure 5 illustrates this intuitive effect for the linear model

x(k + 1) = ax(k) + u(k) + w(k), (64)

with system parameter a ∈ [0.5, 1.5], and where w(k) is i.i.d, Gaussian with zero mean and

variance 0.1. The policy κ is taken as the associated LQR control law; {N}N0 is distributed

as in (62) with τ = 0.3. The percentage improvement is plotted for algorithms A1 and A2, as

compared to the baseline algorithm (4).

We finally examine the effect of artificially limiting the maximum buffer size. In particular, if

the buffer size is taken as 1, then one recovers the baseline algorithm (4); as noted in Section VI,

with size 2, Algorithms A1 and A2 are equivalent. Fig. 6 illustrates empirical results for a

linear plant (64) with a = 1.7. The processor availability is as per (62) with τ = 0.23, thus,

p0 = p1 = p2 = p3 = 0.23 and p4 = 0.08. Allowing the buffer size to be of size 4 gives the best

results, although a buffer of size 3 gives almost optimal performance.

8A total of 1000 Monte Carlo simulations were used to generate the data. Of course, the obtained results are no more than a

case-by-case analysis, and consequently one cannot conclude anything about the superiority of either algorithm in general.
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Fig. 4. Empirical cost achieved when controlling the nonlinear plant model (63) with the proposed anytime algorithms and

the baseline algorithm (4), as a function of τ , the execution time required to calculate one control input, see (62).

IX. CONCLUSIONS

We proposed two related anytime control algorithms for general nonlinear processes. The

algorithms use available processing resources to compute sequences of tentative control inputs.

Thus, even if the processor does not provide sufficient resources at some time steps, the effect can

be partially compensated for. For general non-linear systems, we established sufficient conditions

for stochastic stability. Simple numerical examples indicate that the performance gains with

the proposed algorithms can be significant, when compared to a simple baseline algorithm.

Future work could include examining situations where system assumptions hold only locally,

using the stability and performance characterizations obtained for processor scheduling, and the

development of anytime algorithms for distributed systems.
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Fig. 5. Performance improvement using algorithms A1 and A2 when compared to the baseline algorithm (4), for the model (64).

Acknowledgements: The authors would like to thank the anonymous reviewers for their

valuable comments and suggestions to improve the paper. Research supported for the first

author under Australian Research Council’s Discovery Projects funding scheme (project number

DP0988601) and in part for the second author by NSF awards 0846631 and 0834771.

REFERENCES

[1] P. Antsaklis and J. Baillieul, “Special issue on networked control systems,” Proceedings of the IEEE, January 2007.
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